The Solution of Two-Dimensional Neutron Diffusion Equation with Delayed Neutrons

نویسندگان

  • Mifodijus Sapagovas
  • Virginijus Vileiniskis
چکیده

The distribution of neutron population in nuclear reactor is described by using transport equations. One of possible approximations of neutron transport equation is given by the neutron diffusion equation. The paper presents numerical solution method of one group neutron diffusion equation with one group of delayed neutrons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Techniques for the Neutron Diffusion Equations in the Nuclear Reactors

The space-time neutron diffusion equations with multi-group of delayed neutrons are a couple of the stiff nonlinear partial differential equations. The finite difference method is used to reduce the partial differential equations into ordinary differential equations. This ordinary differential equations are rewritten in a matrix form. The general solution of the matrix differential equation con...

متن کامل

The Finite Element Response Matrix Method for the Solution of the Neutron Transport Equation

-The finite element response matrix method has been applied to the solution of the neutron transport equation. This method has previously been applied to the neutron diffusion equation for coarse mesh reactor analysis with excellent results. As with the diffusion equation implementation, the transport method employs a local-global projection technique to allow treatment of internal heterogeneit...

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

Progress in Nodal Methods for the Solution of the Neutron Diffusion and Transport Equations

-Recent progress in the development of coarse-mesh nodal methods for the numerical solution of the neutron diffusion and transport equations is reviewed. In contrast with earlier nodal simulators, more recent nodal diffusion methods are characterized by the systematic derivation of spatial coupling relationships that are entirely consistent with the multigroup diffusion equation. These relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Informatica, Lith. Acad. Sci.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2001